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Introduction 

In this paper the problem of finding a global optimum of a continuous function f 
over a compact set K of E~ is considered, i.e. the problem of finding a value f* 
such that 

f * =  max f(x). 
x c K ~  d 

Many techniques have been proposed in the literature for dealing with this hard 
computational problem: for extensive surveys the reader is addressed to (TSrn & 
Zilinskas, 1989, Betr6, 1991; Schoen, 1991; Zhigljavsky, 1991). 

Among the most promising methods, in the author's opinion, a special 
attention deserve methods based on clustering analysis (see, for a detailed 
discussion, Rinnooy Kan & Timmer, 1987a,b); these methods provide a quite 
efficient way to implicitly explore most of the regions of attraction of different 
local optima without sacrificing too many local searches. Very briefly a clustering 
method for global optimization consists in sampling a certain number of points 
from K, transforming the sample in order to concentrate sampled points on 
regions of attractions of local optima, identifying the clusters, performing some 
local searches from selected points (representative of different clusters) and, 
possibly, iterating the whole procedure again, until a stopping criterion is 
satisfied. 

Unfortunately, despite computational experience tends to support the feasibili- 
ty of such methods, at least for moderately-sized problems, a few issues which are 
particularly critical for an efficient use of clustering techniques have deserved 
scarce attention in the literature. The first such issue is the problem of determin- 
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ing an appropriate sample size: choosing a sample size which is too high inevitably 
produces an unnecessary computational cost; on the other size, the choice of a 
small sample size may force, during different phases of the algorithm, the 
recalculation of most of the clusters identified in preceding phases. Another 
critical issue is the question of stopping the algorithm: a sensible criterion for 
deciding whether it is worthwhile to continue with a new sample is still to be 
developed and it might never be. This happens because the technique generally 
used for concentrating the sample is that of retaining a fixed percentage of those 
points which correspond to the highest function values; this induces a stochastic 
dependence on the sampled points, and thus some of the stopping rules discussed 
in the literature (see for example, Betr6 & Schoen, 1987, 1992; Boender & 
Rinnooy Kan, 1987) can be no longer applied. 

As a final critical remark on current global optimization methods based on 
clustering we should mention the fact that no measure of the computational cost 
incurred in performing a cluster analysis is explicitly included in the algorithms; 
moreover all such algorithms aim at discovering the regions of attraction of each 
local maximum, independently of the associated function value. In view of the 
fact that there never is any guarantee that such a goal is reached, it seems 
worthwhile to look for algorithms in which local searches are started from 
"promising" starting points only. 

The aim of this paper is to provide a computational framework which combines 
some of the advantages of clustering techniques while trying to avoid some of the 
above mentioned difficulties. In particular, in the sampling phase, some of the 
observed function values are seen as censored observations of a local optimum; in 
other words the function value observed at a feasible point belonging to the 
region of attraction of a local optimum can be seen as a truncated observation of 
such an optimum. It is possible then, after a suitable stochastic model is given for 
the function values of local optima, to make inference on the global optimum. 
Such an inference is based upon two different kinds of informations: regular (or 
non-censored) observations which correspond to function values at local optima, 
as returned, e.g., by a local optimization routine; and censored observations, 
which are just function values at randomly chosen feasible points. The main 
innovation in the approach proposed in this paper consists in the introduction of a 
model for the objective function values at the local optima which is capable of 
taking into account not only, as obvious, the observed local optima, but also 
function values at points which are not stationary. 

The main aim of this paper is to bring to attention on how it is possible to use 
censored information to derive inferences on the global optimum; an algorithm is 
eventually proposed in which such an inference mechanism is used to control the 
cardinality of the sample in a standard clustering method. 

The paper is organized as follows: in Section 1 an overview of some techniques 
for inference in presence of censored observations is given; Section 2 deals with 
the theoretical difficulties connected with stopping a sequential sample in 
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presence of censored observation; an application to clustering methods is 
presented in Section 3, while, in Section 4, computational results are presented 
and discussed. 

1. Stochastic Models 

In this section some theoretical considerations already reported in Betr6 & 
Schoen (1987, 1992) are recalled, and some results related to the use of censored 
observations introduced in Ferguson & Phadia (1979) are presented. 

In Betr6 & Schoen (1987, 1992) an analysis is introduced of the Multistart 
method. We recall here that Multistart is a Montecarlo-like method which consists 
in repeatedly performing local searches from randomly chosen starting points. In 
those papers it is recalled that, under very mild assumptions, the whole process of 
Multistart can be seen as the simulation of a discrete random variable T with 
values in the set o~= {fl, f2 , - . .  ,fn =f*} of local optima of the objective 
function with discrete density function given by 

tz(Ri) 
P ( T = f ~ ) = p i -  /z(K) i = l ' ' ' ' ' n '  

where /z(A) is used to denote the volume, or Lebesgue measure, of a region 
A C ~d and R i is the region of attraction of the i-th local optimum, i.e. Ri is the 
subset of K characterized by the fact that a local search started from any point in 
R i leads to a local optimum whose value is f~. Obviously in any sensible 
application of Multistart neither the set @ nor its cardinality is a priori known. 
The most critical point in the implementation of Multistart is the definition of an 
appropriate stochastic model for T upon which inference should be based. Were 
known, then Multistart could have been easily seen as the simulation of a 
multinomial random variable; this approach is the starting point of Boender & 
Rinnooy Kan (1987), where stopping rules are provided based on a Bayesian 
decision-theoretic framework in which a prior distribution is imposed over n and 
the "shares" p~, i = 1 . . . .  , n. While that model is indeed sensible and provides 
manageable criteria for Multistart, it does not make any explicit use of the 
observed function values at the local optima, thus loosing a crucial information 
gained during the execution of the algorithm. In Piccioni & Ramponi (1990) a 
variant of the same approach is introduced in which function values have some 
influence on the overall process, by assuming that each local optimum has a 
different function value and thus observations can be ranked according to 
function values at the optima. Nevertheless there is no attempt of explicitly give a 
stochastic model of the values in ~;  in the cited papers of Betr6 & Schoen (1987, 
1992) a stochastic nonparametric model for T is introduced and analyzed. We 
summarize here the origin and motivation of such a model. 

A random distribution function F~(t) on R is defined as a stochastic process such 
that (omitting the subscript o~) 
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1. F(t) is almost surely (a.s.) nondecreasing; 
2. F(t) is a.s. right-continuous; 
3. lira F ( t ) = 0  a.s.; 

t - - ~  - - c o  

4.  l i ra  F(t) = 1 a . s . .  

In other  words, a random distribution function is a stochastic process whose 
sample paths are, a.s., probability distribution functions. All classical Bayesian 
statistics is based upon similar processes; in fact Bayesian statistics deals with 
random variables whose distribution functions depend on one or more parameters 
and such parameters are themselves random variables. This way, depending on 
the possible values of such parameters,  different distribution functions are 
obtained. 

Unfortunately,  apart from trivial examples, it seems impossible to model 
Multistart after a parametric family of distribution function; this is the reason why 
stochastic nonparametric models have been introduced. Among the class of such 
models a reasonable compromise between representativeness and computational 
manageability is achieved through the so-called neutral to the right process, which 
is a random distribution function for which, for any choice of t 1 < tz, it holds that 
the random variables 

1 - e(t ) 

1 - F(tl)  

and 

F(t) t <~ t a 

are stochastically independent.  
Formally a random to the right distribution function is defined as a random 

distribution function F(t) such that 

F(t) = 1 - e x p ( -  Y,) 

where Yt is a stochastic process such that 
1. Yt has independent increments. 
2. Yt is a.s. non decreasing; 
3. Yt is a.s. right-continuous; 
4. lim Y t = 0  a.s.; 
5. lim Yt = +oo a.s. .  

The following is one of the main results for neutral to the right distribution 
functions. 

T H E O R E M  1. Let F be a random distribution function neutral to the right and let 



C E N S O R E D  O B S E R V A T I O N S  21 

T be a sample of size 1 from F; let t be any real number. Then the posterior 
distribution of F given any of the following events 

�9 T = t ;  
�9 T > t ;  
�9 T>~t 

is still a random distribution function neutral to the right. 
Proof. See Ferguson & Phadia (1979). [] 

In other  words the class of such processes is closed under conditioning either on 
exact observations or on right censoring. This theorem is of fundamental 
importance and relevance for the application to the design of a global optimi- 
zation algorithm; it states that if we model function values at local optima by 
means of a neutral to the right process, then we still end up with a neutral to the 
right process after the observation of some local optimum value or even after the 
observation of function values at points which are not local optima. This 
closedness property is not enjoyed by most stochastic models. 

It is worthwhile to notice here that if the local searches in Multistart are not 
exact, then we are left exactly with right-censored observations, i..e with the 
information that the local optimum which the current local search would have 
discovered if it had been carried out until convergence has a value which is 
bounded  below by the current observed value. Notice that even the observed 
function values at randomly chosen sample points are right censored observations 
of local optima. 

In Ferguson & Phadia (1979) a random distribution function is introduced 
under  the name of simple homogeneous process which is defined as a neutral to 
the right process characterized by the moment  generating function 

e-~ - ,Zdz)  
M,(O) = E(exp(-OY,)) :  exp(y(t)  ff 1 - e  e 

where ~->0 and y(t) is a continuous, non decreasing function such that 
limt__,_= y(t) = 0 and limt~+~ y(t) = +~.  The function y is easily seen to be related 
to the "prior  guess" F 0 defined as 

Fo(t ) = E(V(t)) 

through the following 

Fo(t ) = E(1 - e x p ( -  Yt) ) 

= 1 - M,(1) 

= 1 - exp(-y(t)/~-) . 

Thus y is a "parameter"  which characterizes the prior expected distribution 
function. 
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One of the attractiveness of this particular class of random distribution 

functions is that it is relatively easy to derive a posteriori information based upon 

a sample. 
Let  F be a simple homogeneous  process, and let T be a sample of size k i> 1 

f rom F consisting of censored as well as non censored observations; let such 

observations be grouped according to the following scheme: 

�9  </ /2 < ' ' "  < U m  are the ordered different sampled values (m depends on 

k); 
�9 let u 0 = - ~  and Urn+ 1 = +m; 
�9 let ni ,  i = 0 , . . . ,  m be the number  of non censored observations in T whose 

value is ui; 
�9 let n ~ ,  i = 0 , . . . , m  be the number  of censored observations in T whose 

value is u i (here,  for simplicity, by censored we mean strictly censored 

observations,  i.e. observation of the kind T i > ui); 
�9 let also hi,  i = 0 , . . . , m  be the number  of observations (censored or not) 

strictly greater  than u i . 

Then  the following holds: 

T H E O R E M  2. Let  T be a sample o f  size k >~ 1 f r o m  a simple homogeneous  

process F; then the posterior expectation o f  F(t) given T is given by 

1 - [rk(t ) = 1 - E(F(t)  I T  ) 

= (1 - Fo(t)) ~/(h'+~) 

[ I  hi + n~ + r 
i=l h i + n > + n i + r (1) 

J r(h i 1 -h i )  

�9 ( 1  - ; o ( U , ) )  
i=l 

�9 l{,~[,j,,j+~)} j = O , . . . , m  

Proof.  See Ferguson & Phadia (1979). [] 

I t  should be quite evident that all of the data required in the s tatement  of the 
previous theorem is readily available during the execution of an optimization 
algorithm: values u i , i = 1 , . . . ,  m are distinct observed function values, n i is the 
number  of observations whose function value is u i which satisfy the usual 
optimality conditions of local optimization; n~ is the number  of observations 
whose function value is u i but which do not satisfy local optimality conditions. 
F rom a practical point of view, the distinction between censored and non 
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censored observations is based upon the return value of the local optimization 
routine which is used in the algorithm. 

2. Application to Global Optimization 

The use of stochastic nonparametric models for the values of the local optima 
discovered by Multistart has been extensively studied in Betr6 & Schoen (1987, 
1992); there the model was used in order to develop suitable stopping criteria. In 
particular both theoretical as well as experimental evidence supported the 
feasibility of stopping Multistart on the basis of a comparison between the best 
optimum found and the expected improvement after the next local optimization. 
This stopping scheme goes under the name of 1-sla, or one-step look-ahead; the 
stopping rule can be expressed as that rule which calls for stopping after the k-th 
observation if 

ffm( 1 -- Fk(U)) du <<- c (2) 

or, equivalently, 

f;( u - u , . )  dP (u) c .  (3) 

Here c is a positive constant. 
The main drawback of Multistart is notoriously its inability to stop a local 

search if it is likely that it will lead to an already discovered local maximum. 
Cluster-based techniques aim exactly at reducing the number of unnecessary local 
searches. Here we propose a modified clustering technique in which a sample is 
taken of the objective function whose cardinality is not known a priori; the idea is 
to sample from the objective function until the expected improvement falls below 
a treshold; after the sampling phase, points are clustered and local searches 
started from a few selected points in the sample. A conceptual algorithmic scheme 
could be as follows: 

1. sample uniformly one point from K; 
2. perform a few steps of a local ascent algorithm; 
3. update the estimate of F(t)  given all of the observations (exact or censored 

depending on whether the ascent steps have led to a local optimum or not); 
4. compute f~,, (1 - Fk(u)) du; 
5. if it is greater than c then repeat from 1; 
6. otherwise perform cluster analysis and stop. 

This way the cardinality of the sample is decided on the basis of a sequential 
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sample which is stopped when random sampling is not likely to be able to produce 
significantly better  observations. 

Unfortunately the above scheme might not lead to a practical implementation, 
due to the fact that the following property which is valid if all of the observations 
are non-censored, does not hold in the censored case: 

T H E O R E M  3. I f  all observations are non censored and Fo is chosen in such a way 

that Fo(f*)  < 1, then, for all t <~f*, 

lira /Tk(t) = P ( T  ~ t) a.s. ( 4 )  
k----~ oo 

Moreover, under the same hypotheses, the stopping time N, i.e. the random 
variable 

N = m i n { k > ~ l  (1 Pk(u))du~< 

is finite with probability i for all c > O. 
Proof. See Betr6 & Schoen (1992). [] 

In the censored case it is obvious that consistency (convergence of the estimated 
distribution function to the actual one) cannot in general be achieved, as one 
cannot hope to perfectly learn a distribution function if he can never obtain exact 
observations (just think of trying to estimate the probability of the outcomes of a 
dice given, say, only observations of the kind "the outcome is 1" or " the outcome 
is greater than 1"). For what concerns stopping, it should be observed that for 
finite stopping times it is neither necessary nor sufficient that the estimate of the 
distribution function is consistent. 

In order  to obtain a finitely convergent algorithm it seems necessary to obtain 
non-censored observations "sufficiently often".  The following theorem gives a 
sufficient condition which illustrates this point. 

T H E O R E M  14. I f  

�9 F o ( f * )  < 1; 
�9 I~ ~ (1 - F0(t)) dt < ~ for all u: F(u) > 0; 
�9 lim n m = + ~  w.p.1 

k - - - ~  -I- co  

�9 there are no censored observations with value Urn, 
then, almost surely, stopping will occur in a finite number of  steps for any choice of  
c > 0 .  

Proof. See the appendix. [] 

The above theorem states that, in order to guarantee that a global optimization 
algorithm based upon the proposed stochastic model will stop after a finite 
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number of function evaluation, it is sufficient to require that at least the best 
possible observation is non censored and that it is observed with sufficiently high 
frequency; the first requirement comes from the fact that if the best function value 
observed so far is censored, we will have a strong tendency to continue the sample 
in order to get an even better observation. From the assumptions of this theorem 
then it seems more appropriate to say that the proposed algorithm is based 
"also", but not exclusively, on censored observations. It is to be remarked that no 
published paper in the global optimization literature report any attempt of using 
function values in points which are not local optima for the updating of a 
probabilistic model. 

It can be remarked here that in practice it has been observed that convergence 
is faster than what can be expected from the above theorem. However a growing 
number of exact observations seems unavoidable and, moreover, it seems that 
convergence for any value of c cannot be achieved by simply having a sufficient 
number of non-censored observations, but one has to repeatedly observe the 
highest one, i.e. um. 

3. Algorithmic Details 

The theoretical results of the preceding section imply that, in order to build an 
algorithm which stops in a finite number of steps, a sufficient number of exact 
observation of the highest observed value are necessary; obviously algorithms like 
Multistart satisfy the hypotheses of Theorem 4 if, as it is usually assumed, the 
region of attraction of the global optimal has non-null Lebesgue measure. On the 
other hand, the conceptual algorithm introduced in Section 2 does not satisfy the 
requirements of Theorem 4 and it is possible to actually display examples for 
which finite termination is not achieved. 

In what follows a modification of that basic scheme is proposed which is mainly 
justified by the desire to reproduce, as closely as possible, the behaviour of a 
classical clustering technique while providing a control mechanism based upon the 
theoretical results of the previous section. 

As a well-known and easily implemented example of clustering-based algo- 
rithm, let us consider a simplified version of the so-called Multi-Level Single- 
Linkage algorithm of Rinnooy Kan & Timmer (1987b) (which, strictly speaking, 
is not a true clustering algorithm): 

1. choose an integer N*; let k = N*; 
2. sample N* points uniformly and independently from K and add them to 

previously sampled points; 
3. let 

, (  ( d \  log k\�89 
rk = 7r-3 o - ~ ( g ) r  1 + ~-) - - ~ - )  , (6) 
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where cr is a positive constant, /x(.) is the Lebesgue measure, F(.) is the 

gamma function; 
4. apply a local optimization routine starting from each sampled point x~ excep t  

if there is another sampled point xj,  such that 

(a) f ( x j )  > f ( x i ) ;  

(b) [[xi-xjl] <~rk; 
5. if a stopping condition is satisfied stop; otherwise set k = k + N* and repeat  

from 2. 

A crucial difficulty in the implementation of this algorithm is the appropriate 
choice of N* and the development of a suitable criterion for stopping. 

What  is particularly interesting in the present context is that the idea underlying 
this algorithm is that observations which fall sufficiently near to a higher valued 
one, say x j ,  are considered as belonging to the same region of attraction of xi. 
Obviously this decision, in view of the fact that (log k ) / k  tends to zero as k---~ ~, 
might be revised during successive iterations. 

Let  us call a point x~ c lus tered  at s tep k with xj. if 

�9 either f ( x j )  > f ( x i )  and Ilx  - xjl l  rk ; 

�9 or there exist another sampled point x~ such that x~ is clustered with x~ and x s 

is clustered with xj. 

In Multi-Level Single-Linkage, if a point is clustered with another one, it is also 
clustered with a point from which a local optimization routine has been started; 
let us call u i the function value at the local optimum found by such a routine. In 
the following algorithm, based upon the observation that, if a clustering algorithm 
is stopped, no local search is started from clustered points, for the purpose of 
stopping it is assumed that the observation at xi is the (non-censored) value u~. In 
other  words, we assign the exact value u i to all points clustered with a single one 
from which a local optimization was performed leading to ui. 

The  idea is now to avoid sampling in batches, i.e. we let N* = 1, and to perform 
a single sampling cycle which is stopped when the expected gain falls below a 
threshold c; during the sampling phase tentative clusters are grown only around 
the best local optima, while a complete clustering is performed, only once, at the 
end of the algorithm. In order to prevent clusters to be built and destroyed too 
frequently,  we suggest to use a conservative value for the threshold rk:  in the 
experiments reported in the next section, the value r k was substituted by r H r k / m ,  

with H = 1000. The algorithmic scheme is thus the following: 

1. choose an integer H and a positive real c; let k = 1, m = 0, u m = -  --00; 

2. sample one  point x k uniformly and independently from K and add it to 

previously sampled points; 

3. if f ( x  k) > u m then 
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(a) start a local optimization routine from Xk; 

(b) let u m be the observed local optimum value; 
(c) let op t ( xk )  = U m and consider this value as a non-censored observation. 

4. Otherwise, if f (Xk)  ~ Urn, 

(a) if there exist a sampled point xj such that f ( x j )  > f ( X k )  within distance 
rnrk /n l  from Xk,  then set op t ( xk )  = op t ( x j ) ,  and consider this value as a 
non-censored observation. 

(b) Otherwise, consider the value f (Xk)  as a censored observation; set 
op t (xk  ) = ' unde f ined ' ;  

5. update the estimate of F given by (1) on the basis of the new observation; 
6. if fire (1 - Fk(t))  dt  > c then 

(a) s e t k = k + l ;  
(b) if k is a multiple of H update all of the clusters on the basis of the new 

treshold rnFk/H1 ; 
(C) goto 2; 

7. Otherwise, cluster all unclustered points using r k as a treshold and start local 
optimization routines following the scheme of Multi-Level Single-Linkage. 

The above algorithm, although quite cumbersome, implements the simple idea 
of sequentially deciding the sample size in order to let sampling terminate as soon 
as there is sufficient evidence that a high value of the objective function has been 
observed. 

In the following section some numerical experiments will be presented in order 
to support the theoretical results introduced in this paper. 

4. Numerical Experiments 

In order to test the effectiveness of the proposed algorithm a number of numerical 
experiments have been performed. Here the experimental setting is presented. 

The test functions used in all of the experiments are those first introduced by 
Betr6 (1984) and successively published, with a C code, in Schoen (1993); the 
general form of the test functions is the following 

nj , IIx - zjl l  ~ 
f ( x )  = k x ~ ~ "  

~"i=1 I~j~i [[X --  Zj][ ~ ' 

where k is a positive integer corresponding to the number of stationary points of f 
and (zi, f ,  ai, i = 1 , . . . , k }  are parameters defining the location, value and 
degree of smoothness of the stationary points of f. In the experiments reported in 
this paper, 100 test functions were randomly generated according to the following 
scheme: 

e d = 2 ;  
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�9 K = [0 ,  1 ]d;  

�9 for each function the number of stationary points, k, was obtained as a 
discrete uniform random number between 10 and 100; 

�9 the global minimum f ,  and a maximum f* o f f  were generated as an ordered 
sample of size 2 from a uniform distribution on [0, 100] 

�9 the remaining k -  2 function values at stationary points were independently 
and uniformly distributed on [ f , ,  f*]; 

�9 the locations zi, i = 1 , . . . ,  k were chosen uniformly and independently on 
[0, lld; 

�9 the "smoothness parameters" a i were chosen uniformly and independently in 
[1.8, 2.2], thus ensuring that, at least, f @ fig I(K). 

The local optimization routine used was LMQNBC, freely available from NETLIB, 

with "standard" parameter settings, i.e. 

maxit 1000 
n [ 0.25 
stepmx I 10. 
accrcy 10. -~5 

For a description of the method and the definition of the above parameters the 
reader is referred to Nash (1984). 

For each of the 100 test functions a total of 5 independent runs of the algorithm 
were performed, with the following experimental setting: 

�9 the prior guess F0(t) was chosen as the distribution function of a random 
variable uniformly distributed on [0, 10011; 

o , r = l  

�9 H = 1000; 
�9 after H observations the algorithm was artificially stopped (this artificial 

stopping actually took place only in 18 of the 500 experiments); 
�9 no local ascent steps were performed to transform the sample; 
�9 o- = 4 i n  ( 6 ) ;  

� 9  

The choice for c was somewhat arbitrary, and chosen after a few experimenta- 
tion. However it can be easily seen from the form of the stopping criterion and 
the definition of F0 that, with this choice of c, if the first observation is non 
censored and greater than 65.8, then the algorithm immediately stops. In other 
words, given the experimental setting and the knowledge of the whole class of test 

1 Notice that this is n o t  the distribution function of the stationary values f~. 
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functions, the "user"  feels satisfied, and thus likes to stop, if he /she  is offered a 
first observation higher than 65.8. That  is, he or she thinks that a global optimum 
with value between 65.8 and 100, although possible, is sufficiently improbable so 
that he or she is not willing to pay the computational cost of further sampling. 
Please notice that this is only the initial situation: after a few observations, the 
posterior distribution might have changed in such a way that stopping will not 
occur even for substantially higher observations. That  is, the left hand side of (2) 
is not  monotonically decreasing with k, nor it is decreasing with u m . 

All of the experiments were made on a SUN SPARC station and the algorithm 
was coded in C by the author. In the figures some statistics on the computational 
experiments are visually reported. In all figures each of the values displayed is the 
average over 5 independent  runs on the same objective function. In Figure 1 a 
comparison between the true global optimum and the (average) observed one is 
displayed. 

It should be observed that the accuracy of the algorithm is very high; it slightly 
deteriorates for test functions with global optimum value greater than 70. This is 
due to the choice of an high value for c; however, looking also at Figure 2, it can 
be observed that only in rare cases the error is greater than 10%. 

The fact that early stopping caused by too high a value for c is responsible for 
lower accuracy can be easily deduced from Figure 3. 

One of the peculiarities of the algorithm proposed in this paper is that sampling 
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is continued until there is sufficient evidence that the global optimum has been 
observed; this is to be contrasted with other well known approaches in which 
sampling is carried out until there is supporting evidence to the fact that all of the 
local optima have been discovered. Obviously much is to be gained by relaxing 
this requirement of observing all local maxima. It can be noticed from Figure 4 
that the proposed algorithm is quite insensible to the number of stationary points 
in the objective function. 

A simple statistical analysis of the data reported in Figure 4 supports the claim 
of weak dependence of the accuracy of the algorithm on the number of stationary 
points; a simple linear regression on the data of the figure gives the line 
y =-0.000330354x + 0.985914 as the least squares approximation. This line is 
reported also in the picture. A standard test for the null hypotheses Y(0: the slope 
is 0 versus the alternative the slope is not 0 gives a value 2.55179 for the T 
statistics with 98 degrees of freedom. The null hypothesis is rejected at the 1% 
confidence level, while it is not rejected at the 0.5% level. This is a typical 
situation in which it is difficult to draw a clear conclusion, but it shows that, if a 
dependence of the accuracy of the algorithm on the number of stationary points 
of the objective function does exist, it certainly is very weak. 

In Table I statistics are reported over the whole set of 500 runs. 
The last two columns report respectively the number of local searches started 

during the sampling phase and the number of local searches started after the 
stopping condition was met: it is somewhat surprising the extremely low total 
number of local searches, especially when compared with the relatively high 
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Table I. Computational results 

n. iterations true opt. opt. found funct, eval. grad. evat. 

avg. 107.826 60.92603 58.53280 165.224 57.072 
std. dev .  203.6142 23.97212 22.17907 236.6804 106.3163 
min 1 8.15752 7.93186 6 5 
max 1000 98.8236 98.7174 1223 1123 

local searches 1 local searches 2 

avg. 1.496 0.852 
std. d e v .  0.702839 1.149824 
min 1 0 
max 4 6 

number  of stationary points (not all of which are of course local maxima, but, it 
can be safely assumed, roughly half of them are indeed local maxima, thus giving 
an estimate of more than 20 optima for the average test function). It seems, from 
this initial computational results, that the algorithm succeeds in sampling, at low 
computational cost, the objective function, starting only few local searches from 
very promising starting points. 

Conclusions and Future Extensions 

A proper  mixture of sequential statistical control of sampling and clustering 
algorithms has been proposed and analyzed in this paper. The resulting algorithm 
seems to be very efficient in terms of number of function evaluations and number  
of local searches performed versus accuracy. It is obvious that such an efficiency 
should be tested against some different algorithm; however the comparison 
cannot,  at present, be performed due to the lack of good, public domain global 
optimization code. Moreover,  as it is recognized by several researchers in this 
field, there is no single criterion on which a comparison should be based: there 
are conflicting objectives in the design of global optimization algorithms, some of 
which are accuracy, speed, memory requirements. This paper tries to suggest a 
possible implementation scheme which permits to get the global optimal value of 
functions with a moderately high number of local optima without performing too 
many local optimizations. 

This is just the first implementation and the results here reported are only the 
first ones obtained. Research is still going on on this subject as well as more 
thorough experimentation carried out. In particular it seems worthwhile to 
explore the tradeoff between higher computational cost incurred by performing a 
few ascent steps from each sampled point and the probable improvement  in final 
accuracy. Another  issue still to be addressed concerns the possibility of using 
different clustering strategies. Finally, the question of finite termination, although 
a sufficient condition is given here, surely requires deeper  understanding. 
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Appendix: Proof of Theorem 4 

Proof. Stopping occurs as soon as 

f ; ,  ( 1 -  Po(t))dt" f l  hi+n> +r "r(hi-l-hi) 
i=1 -h-~-1-+7 (1--Po(Ui))-(h~-~+~)(h*+~)~C" (7) 

This equation can be rewritten in a sometimes more convenient way as 

ffm 1 -  Fo(t) h i + n i > + r  ( 1 -  Fo(ui) l h~+,  
1 ----Po~U~) dt" i=l f i  hi- 1 q- T \1  ----- ? ~ ) /  ~ c .  (8) 

(the proof is by trivial substitution). 
Let us examine the different factors in (8) separately. The quantity 

0~ 1 -/Vo(t) 

"m 1--P0~Um) dt 

can be bounded, for example, in the following way: 

ffm 1 -- F0(t) 1 -- F0(t) l o 
1 ---P0--~Um) dt ~< J",. ;L-;~o-~) dt 

s 1 - ~ o ( t )  
~< dt 

1 - ~ ' o ( f * )  

where, to derive the first inequality, we used the monotonicity of /~0 and the 
hypothesis F0(f*) < 1, while the final inequality, in which t 1 is the first observa- 
tion made, descends trivially by the monotonicity of the definite integral. 

The second factor in (8) is the crucial one: we have 

f l  hi + n~ + r n>m +'r 
i=1 - h - 7 ~ - + - ;  < + > nrn  n m -~ "7" 

T 

-nm +----~---~0. 
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Here  we simply used the fact that each factor in the above product is bounded 
by one, as 

h i + n ~  + r  h i + n ~  + r  
m 

hi_l  + r  h i + n i + n >  + r  
~<1. 

It can be noticed here that the hypothesis n~ > = 0, though quite easily satisfied 
in practice, is not necessary: it is sufficient that, if nm > # 0, it does not grow too 
rapidly, i.e. limk__,= nm/n > = o~. 

Finally we have 

thanks 

( 1-~70(Ui) )hir~l+.r 
l _ ~ o ( U / _ 1 ) l  - ~<I  

to the monotonicity of Fo. In summary 

r ~ 1 -  Fo(t! 
, l:- oTF  

which converges to zero as k grows to infinity. [] 
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